

DPP - 4

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/47

https://youtu.be/gqfA9uwpV3U

https://physicsaholics.com/note/notesDetalis/48

Q 1. Hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in the first 10 minutes and to $42^{\circ} \mathrm{C}$ in the next 10 minutes. The temperature of the surrounding is
(a) $5^{\circ} \mathrm{C}$
(b) $10^{\circ} \mathrm{C}$
(c) $15^{\circ} \mathrm{C}$
(d) $20^{\circ} \mathrm{C}$

Q 2. A body cools down from $45^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 5 minutes and to $35^{\circ} \mathrm{C}$ in next 8 minutes. Find the temperature of the surrounding (nearly)
(a) $30^{\circ} \mathrm{C}$
(b) $-30^{\circ} \mathrm{C}$
(c) $58^{\circ} \mathrm{C}$
(d) $50^{\circ} \mathrm{C}$

Q 3. A body cools from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 5 minutes. Calculate the time it takes to cool from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The temperature of the surroundings is $20^{\circ} \mathrm{C}$?
(a) 5 min
(c) 15 min
(b) 10 min
(d) 20 min

Q 4. A bucket full of hot water is kept in a room and it cools from $75^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in T_{1} minutes, from $70^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in T_{2} minutes and from $65^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in T_{3} minutes. Then
(a) $T_{1}=T_{2}=T_{3}$
(b) $T_{1}<T_{2}<T_{3}$
(c) $T_{1}>T_{2}>T_{3}$
(d) $T_{1}<T_{2}>T_{3}$

Q 5. A body with an initial temperature θ_{1} is allowed to cool in a surrounding which is at a constant temperature of $\theta_{o}\left(\theta_{o}<\theta_{1}\right)$. Assume that Newton's law of cooling is obeyed. The temperature of the body after time t is best expressed by, Let $\mathrm{k}=$ constant.
(a) $\left(\theta_{o}-\theta_{1}\right) e^{-k t}$
(b) $\left(\theta_{1}-\theta_{0}\right) \ln (k t)$
(c) $\theta_{0}+\left(\theta_{1}-\theta_{0}\right) e^{-k t}$
(d) $\theta_{1} e^{-k t}-\theta_{0}$

Q 6. A block of steel is heated at $100^{\circ} \mathrm{C}$ is left in room to cool. Which of the curves shown in figure best represents the correct cooling behavior?

(a) A
(b) B
(c) C
(d) D

Q 7. A body takes 10 minutes to cool from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The temperature of surroundings is constant at $25^{\circ} \mathrm{C}$. Then, the temperature of the body after next 10 minutes will be approximately
(a) $43^{\circ} \mathrm{C}$
(b) $47^{\circ} \mathrm{C}$
(c) $40^{\circ} \mathrm{C}$
(d) $45^{\circ} \mathrm{C}$

Q 8. The solar constant for the earth is about $1.8 \mathrm{~J} / \mathrm{m}^{2}$-s. What is the solar constant for a black body situated on a planet which is situated at a distance of 0.3 times the distance of the earth from the sun?
(a) $9 \mathrm{~J} / \mathrm{m}^{2}$-s
(b) $12 \mathrm{~J} / \mathrm{m}^{2}-\mathrm{s}$
(c) $15 \mathrm{~J} / \mathrm{m}^{2}-\mathrm{s}$
(d) $20 \mathrm{~J} / \mathrm{m}^{2}-\mathrm{s}$

Q 9. If wavelengths of maximum intensity of radiations emitted by the sun and the moon are $0.5 \times 10^{-6} \mathrm{~m}$ and $10^{-4} \mathrm{~m}$ respectively, the ratio of their temperatures is
(a) $\frac{1}{100}$
(b) $\frac{1}{200}$
(c) 100
(d) 200

Q 10. The wavelength of maximum energy released during an atomic explosion was $2.93 \times 10^{-10} \mathrm{~m}$. Given that Wein's constant is $2.93 \times 10^{-3} \mathrm{~m}-\mathrm{K}$, the maximum temperature attained must be of the order of
(a) $10^{-7} \mathrm{~K}$
(b) $10^{7} \mathrm{~K}$
(c) $10^{-13} \mathrm{~K}$
(d) $5.86 \times 10^{8} \mathrm{~K}$

Q 11. A black body at a temperature of 1640 K has the wavelength corresponding to maximum emission equal to $1.75 \mu \mathrm{~m}$. Assuming the moon to be a perfectly black body, the temperature of the moon, if the wavelength corresponding to maximum emission is $14.35 \mu \mathrm{~m}$ is
(a) 100 K
(b) 150 K
(c) 200 K
(d) 250 K

Answer Key

Q. 1	\mathbf{b}	Q. 2	\mathbf{a}	Q. 3	b	Q. 4	b	Q. $5 \quad \mathbf{c}$
Q. 6	\mathbf{a}	Q. 7	\mathbf{a}	Q. 8	\mathbf{d}	Q. 9	\mathbf{d}	Q. $10 \quad$ b
Q. $11 \mathbf{c}$								

